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networks from a geometric point of view. One of the main advantages of a
geometric approach is that it is coordinate-free. i.e., results obtained by a
geometric method do not depend on the particular choices of a tree, a loop
matrix, state variables, etc. Therefore, the method is suitable for studying
intrinsic properties of networks.

It is shown that transcersality of resistor constitutive relations and
Kirchhoff space is a sufficient condition for the configuration space to be a
submanifold. Main result of the paper states that a network is locally
solvable, i.e.. the dynamics of a network is well defined in the sense of
Definition 3, if and only if, capacitor charges and inductor fluxes serve as a
local coordinate system for the configuration space. In other words, if all the
variables in a network are determined as functions of capacitor charges and
inductor fluxes, at least locally, then the dynamics is well defined. Con-
versely, if the dynamics is well defined, then all the variables in a network
are determined as functions of capacitor charges and inductor fluxes.
Because of its coordinate-free property, the main result also says that if the
dynamics is well defined in terms of some coordinate system, then it must
be well defined in terms of capacitor charges and inductor fluxes. Con-
versely, if the dynamics is not well-defined in terms of capacitor charges
and inductor fluxes, then there is no choice of variables in terms of which
the dynamics is well defined in the sense of Definition 3. This shows that
capacitor charges and inductor fluxes are the fundamental quantities in
describing the dynamics of networks. Perturbation results are given which
guarantee transversality and local solvability. Finally, several other per-
turbation results are given which guarantee eventual strict passivity of
dvnamic nonlinear networks. They explain why the voltage and current
waveforms of almost every neumrk of practlcal importance are eventually
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HIS PAPER gives several basic results on dynamic
nonlinear networks from a geometric point of view.
One of the main advantages of a geometric approach is
that it is coordinate-free. i.e., the results obtained by a
geometric method do not depend on the particular choices
of a tree, a loop matrix. state va\/nbles etc. Also. the
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geometric approach allows us to choose a convemcnl coor-
dinate system and use it to derive general conclusions
which hold with respect to any other coordinate system.
Therefore, this approach is suitable for studying intrinsic
properties of networks and it enables us to resolve and
clarify a number of subtle paradoxes and perplexing ques-
tions which lie at the very foundation of nonlinear circuit
theorv. In particular. several basic questions involving the
formulation of state equations for nonlinear networks are
hereby resolved in a rigorous manner.

In Section 11 we will describe nonlinear networks in a
coordinate-free manner. In Section Il we will discuss
transversality of the resistor constitutive relations and the
Kirchhoff space. Transversality is important in that it
guarantees the configuration space to be a submanifold.
We will give two perturbation results which guarantee
transversality. One involves element perturbation. i.e.. per-
turbing the existing resistor constitutive relations. The other
involves network perturbations, i.e.. augmenting the net-
work with capacitors and inductors. In Section IV we will
discuss local solvability which is a condition for the dv-
namics to be well defined. Main result (Theorem 1) savs
that a network is Jocally solvable, i.e.. the dynamics is well
defined in the sense of Definition 3. if and only if. capacitor
charges and inductor fluxes serve as a local coordinate
system for the configuration space of the network. This
means that if all the variables in a network are determined
as functions of capacitor charges and inductor fluxes. at
least locally at each point, then the network is locally
solvable. i.e.. the dynamics is well defined. Conversely. if a
network is locally solvable, then all the variables in the
network are necessarily determined as functions of capaci-
tor charges and inductor fluxes. Because of its coordinate-
free property. the main result also says that if the network
is locally solvable in terms of some coordinate system. then
it must be locally solvable in terms of capacitor charges
and inductor fluxes. Conversely, if the network is not
16cally solvable in terms of capacitor charges and inductor
fluxes. then there is no choice of variables in the network
in terms of which it is locally solvable. This says that
capacitor charges and inductor fluxes are the fundamental
quantities in describing the dynamics of networks. One of
the interesting implications (Corollary 5) of this result is
that if a network is locally solvable, then the capacitors are

i 90

|
|




MATSUMOIO ¢f @l.) GEOMY TRIC PROPERTIES OF DYNAMIC NONLINEFAR NEIWORRS

necessarily locally charge controlled and inductors are nec-
essarily locally flux controlled. This seems to explain why
almost every capacitor (resp. inductor) of practical impor-
tance is locally charge (resp. flux) controlled. After proving
the main result, we will give a network perturbation tech-
nique which guarantees local solvability. In Section V we
will give several perturbation results which guarantee even-
tual strict passivity of dynamic nonlinear networks. Theo-
rem 2, another important result of the paper. explains why
the voltage and current wave forms of almost every net-
work of practical importance are eventually uniformly
bounded.

General Remark: For simplicity, we will usually delete
the superscript T denoting the “transpose™ of a vector or
matrix whenever no confusion arises.

I1.  COORDINATE-FREE DESCRIPTION OF NONLINEAR
NETWORKS

Throughout the paper, we need to use the fact that
transversality, local solvability and eventual passivity are
coordinate-free properties, i.c., they are independent of the
choices of a tree, a loop matrix, a cut set matrix, state
variables, ete. Here we will explain how nonlinear networks
are described in a coordinate-free manner.

Consider a nonlinear network X containing n , resistors,
ne capacitors and n, inductors. Let v =(tvg.t..ty) and
i=(ig.i,.i;) be the branch voltages and branch currents,
respectively, and let ¢ and ¢ be the capacitor charges and
inductor fluxes, respectively, where R, C. and L denote
resistors, capacitors, and inductors, respectively. The fol-
lowing are the standing assumptions of this paper:

(a) The linear graph & which defines the topology of *X
is connected.

(b) W is time invariant,

(¢) The resistor constitutive relations are characterized
by

(tr ig) EAR CR" (n

where Ay is an n-dimensional C? submanifold.
(d) Capacitors are characterized by

(6. .q)EA.CR" (2)
and
lq .
% =i, (3)

where A . is an n.-dimensional C? submanifold. Inductors
are characterized by

(i,‘.¢)EA,ACR:"’ (4)
and
d
"%:vl. (ﬁ)

where A, is an n, -dimensional '? submanifold.

(e) There are no capacitor-only loops and no inductor-
only cut sets.

Remarks: 1) There is no loss of generality in assuming
(a) since disconnected subgraphs can be hinged together.

Connectedness is necessary for  tree to exist.

2) Most of the results of this paper can be casly gener-
alized to include the ame-varving case under appropriate
conditions. We make this assumption simply o0 avond
introducing complicated notations.

3) Under assumption (¢) resistors can be coupled to each
other and they need not be voltage or current controlled.
This includes virtually all modes of representation, includ-
ing the hybrid and transmission representations. In partic-
ular, a broad class of nonlinear dependent sources are
allowed in this formulation. We regard independent sources
as uncoupled resistors. Al mulu-terminal elements are
represented as coupled two-terminal clements.

4) Under the present formulation, capacitors need not be
voltage or charge controlled. Similarly, inductors need not
be current or flux controlled. Notice that capacitors can be
coupled to each other and inductors can be coupled 10 cach
other.

5) Coupling among elements of different kinds are not
allowed. For example, dependent sources controlied
variables of reactive elements are not allowed.

6) We need C* property of Ag. A . and .\, rather than
C" because we would like to define C' vector fields on the
configuration space. (See Section V)

7) Assumption (¢) was introduced only for simplicity.
This involves no loss of generality in view of the results of
Chua and Green (1] and Sangiovani-Vincentelli and Wang
(2].

Now let b=ng+n,.+n, and let

A= {(vdiq.d)(rvg. i) EN(r @)EN (i, ple N, ]
(6)

Then it follows from (¢) and (d) that Nisa(hbtn, tn,)-
dimensional C? submanifold. Let

K= {(r.i.q.9)|(r.i) satisfies Kirchhoff Laws}. (7)

It is well known that K is a (bt +n,)-dimensional
linear subspace. This space is called the Kirchhoff space and
is independent of the particular choices of a tree. a loop
matrix, a cut set matrix ete. Since (e, f.q. ¢) must satisfv
the constitutive relations and the Kirchhoff laws simulta-
neously, the operating points are restricted to within the
following subset:

== ANK. (%)
The set X is called the configuration space of “X since this s

where the dvnamics takes place.

III.  TRANSVERSALITY

Since the dynamics takes place on the configuration
space X, the object £ should be well behaved at least to the
extent that we can write down differential equations on it
For that purpose, it suffices to require ¥ 10 be a differen-
tiable submanifold. A little problem is that even if A\ and K
are perfectly well-defined differentiable submanifolds, ther
intersection ¥ may or may not be another submanifold. A
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sufficient condition for £ to be a submanifold is the
transversality [3] of A\ and K. which is abbreviated by
AMK. It is shown in [4] that if ARK, then ¥ is an
{n +n,)-dimensional submanifold. This is true for any ¢
sub 1anifolds, r=1. We first give a formula for checking
transversality of A and K.

Since A is a C7 submanifold of dimension # . for each
point (vg . ig )€ \g. there is a neighborhood Ug CR"* of
this point and there is a C* function fg: Uy —R"* such
that

AN Up=fz '@ (9)
and
rank ( Df) ng. forall (tg.ig)E€ANUg
(10)

where (Dfg),., i, 15 the derivative of fg at (tg.ig). Simi-
larly. for each point (g .q,)E A (resp. (i, . P)EN,).
there is a neighborhood U, CR*" (resp. U, CR*") of this
point and there is a C? function f U, —»R" (resp. f;:
U, »R"") such that

A NU=f UO)(resp. A, DU =f, (@) (1)

(Cp.ig)

and
rank(Df-) ., o, =nc.  forall(g.g)EANL. (12)
(resp. rank(Df, ), o=n,. forall(i,.¢)EA, NU,).

1t fotlows from (e) that there is a proper tree 7, Let £ be
its associated cotree and let v and i be partitioned accord-
ingly:

e=(v, 105 ) =00, 1 vp, ) (13)
i=(i, i )=lig, i, Diggic)- (14)

Let B be the fundamental loop matrix associated with ‘7.
Then

B=[1: &) (15)

Set x= (r.i.q.9).
Proposirion 1: AMRK if and only if

rank §(x)=bh. forallxeX (16)
where
9’(;)5 )
TRy LS g, i q ¢
D,, fx— (Do f)B: : D fu+ (D, fx)B!"
; D.f, 1 - D
(17)

gnl('v‘k-"n)é [Dv,,,,fk“(pr,tfk)nnk : (Dr,‘t]R)BR( Di,,cfk +(hi,,,,fn)BR'R (D.-,,fk)”l'rz](,.

Here D, fp denotes partial derivative of fg with respect to
v.; and - denotes a zero submatrix. Other symbols have
similar meanings.

Proof: Tt follows from a similar argument to the proof
of Proposition | of (3] that AMK if and only if for each
xXeX,

v i q ¢
[ B
Q )
rank Dr fR Di fR . . =2b
. D, f D,
Dll ,l D¢ jl ¥

(18)

where B is as in (15) and @ is the fundamental cut set
matrix. Since Q=[—B% : 1), one can show. by elemen-
tary operations, that (18) holds if and only if (16) holds. 0]

Remark: ‘1 need not be a proper tree. One simply has
two more nonzero submatrices in (17).

If A and A, admit special forms. then we can give
more explicit formulas.

Definition [: Capacitor constitutive relations A is said
to be locally voltage (resp. charge) controlled \f

rank{D, £-) ne.  forall (g .g)eN NL,

(R .q):
(19)

(resp. rank(D, f£.) ne.  forall(g..gler . NL,)

(e .q} =
where U is as in (11) and (12). Similarlv. inductor con-
stitutive relations A, are said to be locally current (resp.
flux) controlled if

rank (D, f, ), o =n..  forall(i, .¢)EN, N,

(resp. rank (D, £, ) n,. forall(i,.¢)EA, N, )

(i,.m:
where U, is as in (11) and (12).
Let ag: RZ2' "t " L R« he the projection map defined

by
ag(t.i.g. )= (rg.ig). (20)
Let s SR " ' be the inclusion map defined by
(r.ig.¢)=(r.iq.¢) (2n
and set
g = pot. (22

We next decompose B of (15) according to (13) and (14):

[mkmﬁ

B-; =
BI.R BI.(

(23)
Corollary 1: Vet A (resp. A, ) be locally voltage (resp.
current) controiled. Then ARK if and only if
rank Fo(vg.ig)=ng.  forall (vg.ig)Em(X) (24)
where
PR (25)
Proof: 1t follows from (17) that if A (resp. A, ) iy

locally voltage (resp. current) controlled, then (16) holds if
and only if
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rank[D“, Jr —(Dr, fz)B: D, fr (Di, Jx )B-ir]“..,-, 'S
(26)
Since
D fx=| Dt -] Dofu=|D,
D, fe=[D fo: -} Dfe=[D ]

substituting these and (23) into (26), we have (25). Since
(v, )€ 2. the vector (. i) must belong to my(X). O

Corollary 2: Let A, (resp. A ;) be locally charge (resp.
flux) controlled. Then AMAK if and only if

rank F(x) =np. forall xeX (27)

where

Fix=

[D., fx (D, 1)Brn : Dy fi +(Dyy f)Bix = (Do, fi) Be\D, £) "Dy - (D, 1B/, £,) "D, 1]

Proof: 11 A (resp. A, ) is locally charge (resp. flux)
controlled. then (D, f.) (resp. (D; f;)) is nonsingular.
Therefore. by elementary operations, one can show that
(18) holds if and onlv if (27) holds. L}

Example [: Consider the circuit of Fig. 1(a). where A
15 described by ¢ = g () as in Fig. Kby, Then 7= {C} is a
proper tree. B =1 and

T 1~R.:‘R):[~ D fr: ”-K-’k]

which has rank | because of (10). Therefore, AAK for any
A, as long as itis a C? submanifold. Suppose. now. that
v =gog) as in Figo 1(c). Since g - is not injective, A is
not locally voltage controlled and Corollury 1 does not
apply. In order to apply Corollary 2. we compute

which may or may not have rank 1 depending on f, and
g 11 ig =fplrg). however, the above matrix always has
rank | and ARK.

Next suppose that A, admits a generalized port coordi-
nate [3). i.e.. \ g is represented by

£ a Bl v
. y 5“":«]' § Fln)

where a. B, y. and 8 are ng > ny matrices and £ R"* —

R"*is a €7 function. Recall the partition vg = (€, 0 4. ).
. . . .. [ -
ig (ig, ! ig,) and partition a, . y. and & accordingly:

“;["l “:]- B ’[B: B*]

Y ['Y| Y:]- 6 [61 6:]-

Also recall that A g is said o be globally voltage controlled

(3Jif € ig.m g and globally current controlled 1§ vy m

Cgatg)

X

(29)

(30

ig.
Corollary 3: Let A g admit a generalized port coordinate
representation and et A (resp. .\, ) be locally voltage

,'C E;

+

Fig | A nonlincar ciremt with ATA () The arant dagram (b)
Capacitor constitutive relanon s locally voltage controlled (0) Capact
or constitutive relation s locally charge controlled

(resp. current) controlled. Then
Falrp-ix) - [(a: (DFIY) (@, (DF)y)Byy
(e, (DF)y,)Bg © (B,
(B, (DF)8,)Bl, 1 (B, (DF)8,)8/,)

(DF)8,)

(U g

(31)

(28)

x

In particular. if A4 is globally voltage controlled. then

gl(l(rk'ik)
B B, 1
(DF)| | (DF) “l: ) :l .
‘ ] [ Bre! [ Biel].,
(32)
and if A, s globally current controlled. then
R LTI By, . . 1
Felegig) ) : [ . - (DF) B!,
(R ]
B,’R”,.k (33}

We can also give similar formulas for §° when A, (resp.
A ) s locally charge (resp. flux) controlled. We omit them,
however.

Now suppose that A g s globally parametrizable [3).1.¢..
A g is globally diffeomorphic to R+ and write

("R(PR)J'R(PR)); ¥ I(PR)- pr e R™  (34)

where Yu1 A g =R« is a global coordinate svstem.

Defimition 2: A (resp. .\ ;) s said to be globally para-
metrizable f (vo.g)E N (resp. (1, . $)E .\, ) is represented
by

(35)

(v (o )glp ) =¥ "(p ). p ER™

(resp. (i (p, ) dlp, ) ¥ '(p).p, €R™)

where ¢ 0 A, —=R™ (resp. o0 A, —=R" ) is a global
coordinate svstem.

If N, Noand A, are globally parametrized. then A of
(6) 1y parametnized by p- (pg.p .o ) and (i .v,). We
write this as x

xp.i .v)E N

s,
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Proposition 2: Let A g A cand .\, be globally parame-
trized. Let ¥ be a proper tree and let ¥ be its associated
cotree. Then AAK if and only if for ecach pER". with
x(p.ig .t )EX:

rank F*(p) =y (36)
where
. D“REJ”BRR( Dl‘k.‘) By (Dr)
e Diy, - Bin Dig,) : - Bl{Di)|
. (37)
Proof: First, observe that for any x€ A\
Dr
Di
T.A=1m Dy : . (38)
Do |, e

Recall that the Kirchhoff space K is parametrized by
(t:.0 .q.¢).

c=Qv.. i=B'i . qER". SER".
This implies that
v i q ¢
Q'
T K=Im| . gr . .|. (39)
1
1
By definition [3]. AAK if and only if
Dv o’
) . 7 N
Im bi +1Im B =R
Dq . . 1
Do i, e o 1 (40)
which is equivalent to
Dr Ql'
il . ro. .
rank bi-\ B “2btng inyg.
be| - ' o Wi (41)

BIEE

Accession For

TTIC TAB
Uniinnsunced O
Justificntion |}

More explicitly, this matrix has the folowing form:

Pr . P, ¢ 4
I

GRA&L

Dint
!
|
!
!

_ Dey,
P ”U(
Cictr butinn 1
; / ) DIRc
Availatility Codes . . Di,
‘1 audfor |
. fiil or ;
Dig,

Loretinl

:lj

By clementary operations. one can show that (41 holds if
and only if (36) holds. -

Remark: Proposiion 2 holds even when A o A Land A
are focally parametrized at each point, and it includes [5] as
a special case.

Suppose now that AFA. Then it would be helpful if one
can perturb *Y in an appropriate wayv such that the result-
ing network satisfies transversality. In the following we
give two perturbation results. The first method involves
clement perturbation and consists of perturbing the exist-
ing resistor constitutive relations . The second method
involves network perturbation and consists of augmenting
N by adding arbitrarily small linear inductors and arbi-
trarily large linear capacitors by pliers-tvpe entryv. and b
adding arbitranly large linear inductors and arbitranis
small linear capacitors by soldering-iron entry. Therefore.
in the imit we recover the original network, Notice that
this procedure consists of adding parasitic capacitors and
inductors at approprniate locations.

In order to give a transversalization result via efement
perturbation, let us first define a - perturbation of \ .
Let M be a C° submanifold of R” and let C(M.R") be
the set of all C* maps from M into R”. Let FEC(M.R")
and consider

N Fe(+))
GECH{M.R")
(X)) - Glx)! < i(dF), (dG),
+i(d°F) - (d°G) el x).
forall xé M [

= 5 G: M-SR

where e(x) is an arbitrary continuous function from M into
the set of positive numbers and d°F and d°G are the
second derivatives. These sets generate the strong € topol-
ogy for C3(M.R") [6]. The set Embi (M. R™) of all ¢*
embeddings of A into R” is open with respect to this
topology [6]. Let N (¢y,) be a neighborhood of the nclu-
sion map such that all elements of (¢, ) are embeddings.
Then a C° perturbation A of A is defined by Af G A7),
where GEN(ey,). The following is our first transversali-
zation result via element perturbation. Although the proof
is similar to that of Theorem 3 of [3]. there is a technical

Cha ¢ fr,2 i 4 9

By By,

B« B

1

1
1 : S (42)
1
Bin By

an
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difference because of the C* perturbations instead of ('
perturbations. Proof is given in the Appendix.

In the sequel.  denotes variables, functions, sets, ete.,
associated with a perturbed network.

Proposition 3: Given a nonlinear network 2 let ANK
# © and AKK. Suppose that A (resp. \\,) is locally
voltage (resp. current) controlled. Then there is a pcrlurhd-
tion A of Ay arbitrarily close to \R in the strong C
topology such that ANK#£ o and AMK, where A s
defined by (6) in which A is replaced by A .

Remark: Recall Corollary 1 where A (resp. .\ ) s
locally voltage (resp. current) controlled and observe that
¢iy depends only on (vg.ig). This is the reason why one
can transversalize .\ and K by perturbing A ; only.

The next result gives a transversalization procedure via
network perturbation.

Proposition 4: Given a nonlinear network X let ANK
#* & and AFK. Let ¥V be a proper tree for & and let £ be
its associated cotree. Partition ™V and £ as 7= R U C and
£ = R, UL, respectively, where R, C. and L denote resis-
tors, capacitors and inductors, respectively. Insert an arbi-
trarily small linear capacitor in parallel with each branch
of R. and insert an arbitrarily small lincar inductor in
series with cach branch of R... Then the perturbed network
\ satisfies the following properties: (i) ANK== @, (i)
ATK.

Proof: Let C; denote the branches representing the
capavitors added in parallel with R and let L denote the
branches representing the inductors added in series with
R . Then 7= CUCUR,_ is a proper tree for X and
T LUl UR s its associated cotree. Let

¢= (vt 1,

i"—(qu.i,.i,‘ Diggeicic) | (43)
< (g.9).9= (¢.9)) )
[ Dl‘"CfR - Dr,(,,fR Di,,,‘fk
) D, 1 '
Fery | - : -C

be the variables of X Let

(Co.0,.9u- D) EANK £ (44)
) '("Rg"l. -ty l’(..’l
(45)
v lin iy g i) |

We first claim that with
€, (rk “.r,v“.0 IR
iv lig iy ig ig i .0) (46)

do (90 Cirg “)-4"0 (0. Lig ”)

we have
(éﬂ":()'q.(h‘.#())EK (47)

where €, and L, are the capacitance matrix and induc-
tance matrix, respectively. of the added clements. Since
(v, I(, §o. @) corresponds 10 open-circuiting branches of
C, and short-circuiting branches of 1., and since such a
situation is contained in K, we have (47). Next. sinee no
resistors are added. we have

A-{(e.ig.d)(riq.o)1EN]. (4%)
This implies that
(':‘(I‘f()‘qA(l'&)li)E‘.\ (49)

which together with (47) implies (1).

(1) In order to prove ARK. we compute (3}'( Lyot (A7) for
. Observe that fundamental loop matrix B for *X associ-
ated with the tree *7 assumes the following form:

Cra U Uy 0 Uy Y e
oo ! (50)

1 o Bu BIR

-1 BR( BRR

where the submatrices in (50) correspond to those of B for
N (see (23)). The sign of the identity matrices in (30) are
chosen merely for convenience and involves no loss of
gencerality, Next. notice that

fo=foe (fpoin) (rp-ig)
le fR D(R fR Di‘N(jR l)"h‘-fk
D, Jo D Ju D fo Dy S

Substituting these and (50) into (17) we have

. L. | B - (sh
Di,f/. : L C l)¢fl
L ' ' ’ !

1t follows from (10) and (12) that

runle”rfk "D Sk D Ik Dujkh.,.m Hy
rank (D, fo 2 Do f 1o, g7 1
runk[l),.l fl l).:.f[ lu‘, ¢)7 n,

for all (v i )E N, (v . @)EN and (7. $)E A, | Tespee-

tvelv. It follows from (S1) and (48) tha
rank §(%) -

ngtnotngtne v,

for all £€ 2. where n . and n, are the number of capaci-

.
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: (@) (b)
Fig. 2. A nonlinear circuit with AFK (a) The circuit diagram. (b

Resistor constitutive relations

tors and inductors added. respectively. It follows from
Proposition I that AAK. !
Example 2: Consider the circuit of Fig. 2(a) where the
rc»Nor uvn\mutm: relations are given in Fig. 2(b) with
=felrg ) k= Then fT={R,. R.} is our proper tree

““d By = B, 'Bu =0 B =1 1]

— Dfy,

B D.rJ'

1 -
Dik«fkw{- l]. D'."efkt o

Therefore (17) is given by

Dl*,(l,fk =4

. ~ Dfyg, . 1
Fe.i.p)= Dl ]
~L1 Wipet k)
Now for the value 1% in Fig. 2(h), we have i% =fg(vg, )
“Jrlvg, ) and (Dfe),, = (Dfg),, =0 Let
(v dg )7 (g .Ug ”.i’,}.l;). €1, T TR Ok = 0%
and ¢, = L1, . Then (cg . vy ig iy 9y) = (64 iy 9, € X

and rank F(r,. i, 6,) = 2-\3 and hence AFK. Insert. now.
Cyyand Gy as in Fig. 2(a). Then Proposition 4 tells us that
AmK.

The transversalization procedure is simplified if .\, s
focally voltage controlled [3]. i.e.. (9) holds and

rank (D;, f) for all (g ig)E N Ny

(52)

(r,‘i,()m Ng.

(9 holds and
forall {(ve. ig)E N, N .

or locally current controlled. 1e..
rank (D, fr)

(. ig) g

(54

Proposition 5: Consider the situation of Proposition 4
and assume that A g is locally voltage controlled. Insert a
small linear capacitor in parallel with cach branch of R |
Then the perturbed network X satisfies the following prop
erties: (i) ANK= o:and (i) ARK.

Proof: (1) can be proved in a manner similar to that of
Proposition 4. 1t is clear that = CUCy is a proper tree for
Mand £ R UR_UL is its associated cotree, where €
represents the branches of the capacitors added. To com-
pute wi(x). observe that the fundamental loop

P

"We denote a O - ¢ matnig by

“4

1L TRANSAC TTONS ON CIRCUTEN AND SYSTEMS, VOL

CAN-2RD N S MaY YR

() th) W)

g, 3. A nonhnear reurt whose local sohvabihts depends on resistor
comtitutive relations (1) The ctreuit diagram (by Resistor constitutine
refation where the cireuit s not focally sobable (0) Resistor constitu
unve relanon where the arcuit s Tocally solvable

matrix for X is given by

Cre  CTro U LTE
o !
l By By
- B By
where the submatrices are those of Y. Therefore,
D fo . Df-,,ffk =D fx
Di fp . D fy =D, S (- f) = (Chuig).
Substituting these into (17) we have
(D, fu)Byc @ D, Jr :
oy | Dot b
-C, LT
: D, f, D, 1,

By using (12). (32) and clementary operations. one can
show that rank (&) g v~ ony for all i+ o
where ¢ s the number of capacitors added. lhgrdurg
I’rupmllmn [ implies that AFK.

A dual argument shows the following:

Proposinion 6: Under the same setting as that of Pro-
pasition 4, assume that A4 is locadly current controlled.
lnscrl a small linear inductor in series with cach branch of

R . Then the perturbed network 0 has the following
properties: (i) AR # 0 (i) ARK.

IV. LocAl SOtvasinin

Recall that transversality of X and K is a stenie condition
in the sense that it has nothing to do with the dvnamies of
. Inorder to motivate the discussion of this section we
first consider the following example.

Example 3. Consider the ciremit of Fig. 3a) where A g s
given by Fig. Iby with v, g0 If we chumc G e
he our tree. then By 1D, /R /R Dg, and
rank St 1) rank| 1 [)qR] I follows from
Corollary | that AGR and X s a pcrfutl_\ well-defined
one-dimensional submanifold. The dynamies. however, has
points where it is not well defined. To show this observe
that 1, serves as a global coordinate for X0 e
(U Uoidgodo o) (gulig) Qulig) g 1. Cpligi
where s the capacitance. (Nonee that 1, cannot serve as

a coordinate)) In terms of this coordimate. the dvnamies s
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given by two-tensors on a general manifold since manifolds gener-
dig A ally are nonlinear.

al Dgﬂ)u o r (54) Let r* be the induced map [{6] of #. Then #* pulls G

Since (Dgg), =(Dgg), =0, differential equation (54)
is undefined at ig =ip and ip =ig . Then one might like
to choose another coordinate and check if the dynamics is
well defined evervwhere in terms of it. If it fails. then one
may try to choose another coordinate and repeat the same
procedure. The problem, however, is that there are, in
general, infinitely many coordinates. Therefore. well-
definedness of network dynamics should be defined in a
coordinate-free manner and there should be a method of
checking that porperty in a coordinate independent manner.
That is exactlv the problem of local solvahility discussed in
this section.

We will first show how the dynamics of a network is
described in a coordinate-free manner. Let ": 3%
—R" "™ be the projection map defined by

w(v.iq.$)=(q.9) (55)

and let
7= q'oy (56}

where ¢ is defined by (21). This map is the same as the
restriction w2 of #’ 10 Z. Consider the following symmet-
ric two-tensor G on R"< "™
ng ny
G= 2 dq®dq, ~ 3 de®@d9, (57)
i 1

A A

and the following one-form on R2%" 7 " 7i;
" "y
n= 2 "md‘h_ 2 l‘l,kd‘bl.- (58)
kol Aol
Remark: A simple explanation of one-forms is given in
[3]. A symmetric two-tensor G on R” is a collection of
functions: R° XR? - R given at each point (x,. v,)ER"

by
G(\,,!_-): 2 fmn(xl"\.l)dxm®d"'n
m.n |
where f = are real-valued functions, f,, =/, and

1 -
dy,®dx, = [ _ dx\@dx, = [ . }

d,\'_.®dx,:[i d.\'_,®d.\'3:[: 1]

Consequently,
("n..m([l ()]T~[] ()]T):fn(»"l--":)
a b

where we look at a matrix /
L 8 «

satisfying

a b ' : plf x,
st ok )

Therefore. G can be thought of as the matrix-valued func-
tion [ /,,,}. One needs to be careful. however. in defiming

]asa map: R* xR »R

back to £ by the following formula:
(7%G),(£.£:)2 G ((dm) & (dm).£:)  (59)

where . &, € T, Z. Similarly, let ¢* be the induced map of
t. Then

W= ] (60)
is a one-form on X defined by
wr(£): "I(I)((d‘)xg) (61)

A coordinate-free description of the dynamics is given by
the following:

Proposition 7: Let ¥ be an (n, +n, )-dimensional -~
submanifold. Then the vector field X7 describing the dy-
namics of network satisfies the following:

(W*G) (X,.£)=w(£). forallET,X. (62)

Remurk: An easv wav of understanding (62) is the fol-
lowing: Let 4 be a symmetric nXn nonsingular matnx.
Then (Ax, y) is a symmetric bilinear function on R” - R".
where (-.-) is the inner product. e (Ax. y)~ (x. Alyy.
and (Ax.-) and (A4-. y) are linear. For a vector « €ER".
the formula

(Ax. p)=(w.y) forallyer”

uniquely defines the vector x = 4 ‘w. If the network is
reciprocal and if £ denotes the mixed potential. then w of
(62) is given by w=dP. differential of P.If (g. ¢) serves as
a global coordinate svstem for X, then

(4 ﬁl)
Xxh(dl.dl

LN "y

w, = 2 Folg.ddg, -~ 3 F(g.9)do,
A A1

where F. and F, are determined by
(ig.—t;)
=K (q.®) K (q.9). F (g.¢).- o F (g.9)).

Therefore. (62) is reduced to

/

‘ %.—f;,‘(q.q,). ko1,
dt
d

l ii,L:—-I-',‘(q.n#). I N T
dr

Proof of Proposiion ~: Let

(dm) g 8 (8,08, Se o ) (61

‘A vector fickl ¥ on mamfold £ s a function such that the value N,
e X belongs 10 T Y, the tangent space of £ at 1 The vedtor fickd A
naturally generates a OQow vy such that deeny e X

e
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Then, by definition. the left-hand side of (62) reads
(w*G) (X,. &) =G, ((d7) X (d=m) £)

o[ 2%2) )

dt * de

wx)

" N
:( 2 dg®dy, - 2
A- A

1

((<2),.5)

",y

do
f - 2 '—A§¢"
A1

d¢A®d¢A)
1

"

=2

kol
The right-hand side of (62) is given by

d
LY (64)

dt dt

",

u*n),(g):{ 2 i dg— Z r,_dm)((dn,g)
Aot A}

| B 2 oo fuam
Ao Aot

", "y

= 2 1('A§q‘4 2 “l.kgm-
At

L

(65)

Equations (64) and (65) together with (3) and (5) imply
(62). O

Proposition 7 and Example 3 naturally lead to the follow-
ing definition:

Definition 3: Given a nonlinear network X assume that
Yis an (n, +n, )-dimensional C* submanifold. Then 7 is
said to be locally sofvable if (62) uniquely defines a ¢!
vector X, €T, 2 at each point x€ X,

Remurk: Locat solvability defined above is 4 coordinate-
free version of the one in Chua and Wang [7]. If A (resp.
A, 1s globally voltage (resp. current) controlled. this defi-
nition coincides with regularity of Smale [8).

We are now ready to state the main result of this paper.

Theorem 1: Given a nonlinear network X suppose that
Xisan (n, +n, j-dimensional C* submanifold. Then X is
locally solvable if and oaly if, at zach point x€X, (q.¢)
serves as a local coordinate system for 3,

For proof we need a lemma. Recall (#*G) (-, -) defined
by (59) is a bilinear function on 7,2 x T, X,

Lenvma 1. Suppose that £ is an (n +n, }-dimensional
C* submanifold. Then X is locally solvable if and only if
at each point x€ X (w*G'), is nonsingular, i.c..

(w*G) (§,.£,)=0, forall§ €T 2 implies &, =0.

(66)

Proof: We look at (m*G) (-.-) in a slightly different
manner. Consider the map J, defined by
o &G (§,.-). (67)
To each §,. the map J, assigns the linear functional
{(w*G) (£,.-)on T X A linear functional on 7, X belongs
to its dual TP, This means that J, = (w*G ) (. -) maps
T.2Z into T}Z. It is clear that (66) implies that J, is an
isomorphism and. therefore, it is invertible. It follows from

'A linear functional is a real-valued lincar function.

T TRANSAC TTONS ON CIRCUTTS AND SYSEIMS, VOLL CAS-2R SO0 50 vay 19K|

(62) that a vector field X_is uniquely determined by

X, () o, (6K)
In order to show that X is C'. recall definition (59) of %G
Since X is C*. the map dw is C'. Therefore. (J,) "is (!
Similarly & ts C'. This implies that X determined by (68) 1
C'. Conversely, if J_ is not an isomorphism (62) cannot
determine a unique vector field. .
Remark: In Example 3. in terms of the coordinate /. we
have (G, = C(Dgy), di @ dip which becomes singulur
when (Dg, )‘M:( Dg, b & 0.
Proof of Theorem 1: Recall definition (39) of =*G.
Since G, ,, defined by (57) is always nonsingular in the
sense of Lenvna 1. we see that (w*G ), 1s nonsingular if and

only if the following map is an isomorphism:
(d‘”)X: Tx‘\_‘ - T Rﬂ( .y

mx)
Le., @ is a local diffeomorphism at x. But this precisely
means that (g. @) serves as a local coordinate system for &
at x. —

Remarks: 1) Because of its coordinate-free property.
Theorem [ is of fundamental importance. It savs that of all
the variables of a network are expressible in terms of
capacitor charges and inductor fluxes, at least locally, then
the network is locally solvable. i.e.. the dynamics 1s well
defined. Conversely. if the network is locally solvable. then
(g.¢) necessarily determines all the variables in the net-
work. Another important interpretation of Theorem [ is
that if (62).uniquely defines a C' vector field with respect
o one coordinate system. then it defines a wnique !
vector field with respect to capacitor charges and inductor
fluxes also. Conversely. if (62) fails 10 specify a unique C!
vector field with respect to (g. ¢). then there is no choice of
variables in the network in terms of which (62) specifies a
unigue C' vector field. These observations show that
capacitor charges and inductor fluxes are the fundamental
quantities in describing the dynamics of a network.

2) Let us explain why .\ must be ('* in order to define a
C! vector field by using a simple example. Consider the
circuit of Fig. 3(a) where .\, is given by Fig. 3(¢). Assume
that g is a global ¢! diffeomorphism. Therefore 1,
hp(tg) where hy =gp ! and hig is also a global ¢! diffeo-
morphism, The sets A and X are ¢! submanifolds, Capaci-
tor voltage v - serves as a global coordinate for X and the
dynamics is given by

dee hal—1.) (70

a — C )
The right-hand side is C'. Now it is clear that 1, is another
global coordinate for £ and the dynamics is given by

(69)

dig ig
Sr_ & 7
di C(Dgg),, th

Since g 15 C'. the right-hand side is only C% This gives
rise to a problem because a C” vector field cannot guaran-

tee uniqueness of solutions. If we assume, however. that g,
is a C* global diffeomorphism. then the right-hand side of
(70) and (71) is at least C'. Therefore. C'-ness does not
depend on the choices of coordinates. More generally, let X
be a vector field on X and let (UNZ, ¢) be a local chart at
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x € 2. Then a nawral coordinate representation is
(XY= (d¥) X,

If (3'NX.¢) 1s another chart, then for xEUNNY
has

ane

(X($), = oy 'oy)) X,
=(d(¢ov '), (d¥),X,
=(d(¢=y¢ ), (X($),-

Therefore, if we want X(y) to be (7 independent of the
choice of coordinates. we must require the change of
coordinates d(¢poy ') to be €. This requires oy ' 10
be at least C”* 1. But this is exactly the condition required
for £ to be at least C7*!, Therefore, a €7 vector field can
possibly be well-defined only on C* manifolds with s>r.

3) Observe that ('-ness of vector field is required in
order to guarantee uniqueness of flows because a C? vector
field. in general. does not suffice for generating a unique
flow. Roska [9] obtained several uniqueness results in terms
of the network topology and resistor constitutive relations.

4y If dimSs£n.+n,. then (dmw), of (69) is always
singular and (62) cannot determine a unique vector field.
Therefore. transversality of .\ and K is one of the im-
portant conditions for local solvability.

The following shows that the results of {5]. {8]. and {10}
are a special case of Theorem 1.

Corollary 4: Suppose that .\ (resp. .\, ) is represented
by g=g(t. ) (resp. =g, (i;)} and suppose that (Dg),
(resp. (Dg,) ) is nonsingular. Let £ be an (n +n,)-
dimensional C? submanifold. Then X is locally xohablc if
and only if at each point xE€X, (y..i,) serves as a local
coordinate system for =,

Proof: If (Dg), (resp. (Dg,); ) is nonsingular. g
(resp. g,) is a local difteomorphism. Therefore, (t..i;)
serves as a local coordinate system for = if and only if
(g.¢) serves as a local coordinate system for = 0

Remark: 1n [5). [8]. and [10). (Dg.), and (Dg,), are
symmetric and positive definite. Therefore, they are non-
singular.

The following is an example of a locaily solvable circuit
whose capacitor is nor voltage controlled.

Example 4: Consider the circuit of Fig. 1(a) where A . is
given by Fig. 1(c) and Ay is given by g = gglte). Capaci-
tor charge ¢ is a global coordinate for £ and the dynamics
15 described by ¢=gg(—g(¢)). Clearly. this crcuit is
locally solvable but the dynamics cannot be described in
terms of v,..

We will next show that if the assumptions of Corollary 4
are satisfied. then (62) is reduced to a formula in [10). To
this end let

wix)

t=A'NK? (72)

S dq,®dq, — 3 d¢k®d¢,‘)((d(woF))(c_nx(,_,.,.(d(wo
Ko '

= 2 E Cmn(v(‘)xl?,.’)
m- 1\in=1|

where

A" {0 i) ERM | egig ) E AR (73)

K'= {(e.i)ER™|(c. i) satisfies KVL, KCL}. (74)
Let A, and A, be charactenized as in Corollury 4 and
define

"y

G'= Y C,.(u)de ®dvg - S oL, Ydi, ®di,
m.n | m.n |
where
[Cante )] = (D), o [Laalif )] =(Dg,), . (75
Leta’: ¥ —R" '™ be the projection map defined by
afled)=(v . i) (76}

and let ¢: ' S R*" be the inclusion map. Finally. let
"y n,
= ¥ vy dig + d( > Ul )
kot Ao

Then the vector field X' which describes the dvnamices s
given by [10]

(nG"), (XE &) =al (&) forallgt €T,

(r. " (RN B} . n"'

(77)

where ' = ™*y'. Let F: ' X be the (global) diffeomor-
phism defined by
Fle.i)=(c.i g (e ) g (i)
Proposition 8: Suppose that the assumptions of Corollary
4 are satisfied. 1f X is locally solvable. then (62) is reduced
o (77, 1e.,

(78}

X?

(v.§)

(dF ) XF(rJi'

Proof: Let Xy, ;, be the vector field determined by
(62). It follows from (78) that

XF((‘.:) (d'. )(a i) (1 )]

(79)

(RO)
for some X!

(e,

X =(x!.x!.

HE (XL XN ET S Let us write
X)X (XXX
Then

(dF),. ., X% ta=( X X (Dg ) XT .(Dg,r). X»’ J.

We will show that X ;, is the same as the one determined
from (77). To this end note that for (€T 2, there is a

¢ eT, 4" such that
§=(dF), €' =(£!.¢].(Dgc), &, (D, ), &, ). (81)

We substitute (80) and (81) into (62). Then the left-hand
side reads

F ))(r.i)st )

Conl 0 )81, ) 2 2 Loy )X.',”)( s Lm(i,,)e,*,") (82)
n
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where we used (758). The nght-hand side turms out to be

Il‘ ”‘ ”/ ”l
E L . : (.mu( L ’5.1, ’ S Uy ,,‘< E [‘mn( il ’gli,
: n o\

mo| no\ mo
(83}

Sincc $ tdim Fy 8 since (dF ), s nonsingular and
since s locally solvable, ie. (dw)g, ;, 15 nonsingular,

there is a &' such that

" "y
S (‘mn( L )5:( L ‘ an N E I‘nm( i] )g}ll 0 (84)
no no

where §mnn= Vil s noand 8nm -0 4f m=xn.
Substitution of (84) into (82) and (83) gives

H,

E (;nn‘ l‘(A)'\-l‘v :71(',,,' (85)
n o
Similarly. there is another vector & such that
"‘ I]’

Gl € I8! =003 L, 8, (86)

v
A mn

n o nol
Substituting (86) into (82) and (83) we have
"y

E 1‘mn("l )\l :l‘l . (87)

I "
no

The vector field X ;, determined by (85) and (87) 18
exactly the same as the one obtained by (77).
We will next give a simple formata for checking lm..xl
solvabtlity of X0 Let fy. £ . and f; be as in (9) (12,
Proposition 9 Let X be an (a, +n, )-dimensiona) C°
submanifold. Pick a proper tree 5 and let ¥ be s associ-
ated cotree. Then 2 is locally solvable if and only if

det I0(x)==0. forallxeX (88)
where
D fu (D, fu)B D, fu+ (D, fu)B
H(xi- - D [ :

0, f

X

{89)

Proof: Let (4. X0 L) be a local chart for X at x. Then

(dw), s an isomorphismiif and onlv if (D(woy "))y, is a
nonsingular matrix. Since woy ' -moreyd L we have

(Dlmey ")), = (D) (d) (DY ') (90)

yley

Since (de) is a linear inclusion map, the matrix of (90) is
nonsingular if and only if

Ker(Da') nIm(Dy '), - {0). (91)
Let G: U—R-" be defined by
Bre
o
Glx) frlrg.ig) (92)
folec.q)
Liti ¢)

oA Al

where B Q. cte., are as in (18). Since 2050 G (0, we
have [3)
X Im(Dy J,#'

X

Ker(DG . (93)

L 3

It follows from (91) and (93) that the matnx of (90) i~
nonsingular if and only 1f

Ker(Da') ~KerlDG) 0 (94)

which is eqaivalent to
DG ) )
rank D'ﬂ'J =2bng oong. (95,

Computing the matnix of (93). one can show that 1t has
rank 26+ n -+ ny f and only if the followmg matris has
rank 2b:

r, C. f [
I B
. . B! 1
D_f p_f. - D f D f (961
ve JR va JR . ii IR w JK
D, f
[):f/

By elementary operations, one can show that this matn
has rank 251 and only if (88) holds.

This result has an interesting consequence. Let a0 2.
R (resp. ;0 =R ) be the projection map defined
by (X)) 7 (ro.g) (Tesp. (X)) (1,.9)

Corollary 3 1 s locally solvable. then

det(D,. £) = (), for all (v .q)e @ (X)) (97)

(v .4)

and

det(D, f, )“ o=l

forall (7, .¢)um (X)), (98)

Proof: Since (D, f), ,, and (D fy), ,, are square
matrices, (88) forces (97) and (98) to hold.

Remark: The above result savs that of 0 s Jocalh
solvable, then capacitors must be localty charge controlled on
a {Z) and inductors must be locath fley conmradled on
@, (2). In other words, if capacttors are not locally charge
controfled at some point (¢ ., < m (2) or imductors are
not focally flux controlled at some point (i, ¢, ) X)),
then there is no chowce of local coordmate system i terms
of which the network s locally solvable, This seems to
explain why we do not find capacitars gresp. inductorsy of
practical importance which are not locally charee (resp.
flux) controlled.

Importance of local charge (resp. flux) controlledness s
further emphasized by the following:

Corollary 6. Suppose that A (resp. .\, ) s desenbed by
g =g At ) resp. @ - g, (6, Nand suppose that (r, .1, 1 serves
as a global coordinate system for 01 det(Dg e, 0 for
some v, €R™ or deteDg, ), O forsomei; « R™ then
s aot locally sohvable.

Proof: W (¢ . i, ) serves as a global coordimate ssatem
for X, then (g .g (e nem () for all ¢ ¢ R" and
(i . g i, NE®(Z) for all i, €R™ . Therefore, Corollary 3
implies the resuit. .
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Observe that the above result savs that even of (v ;)
serves ay u wlobal coordinare svstem for 200 network o
not be localiv solvable. The followmng example shows the
case i point.

Example 32 Consider the aircuit of Fig, Ttay where A v
anen by Figo Hern As was shown n Example 10 A TA
alwans holds for any A, as long as it s a C7 submamifold.
Suppose that A, iy deseribed by 1 gptv, ) Then ¢
serves s a global coordimate for X0 Since there are points
where ( De ), O this arcuit s not locally solvable,

I we hnow that A tresp. .\, ) s locally charge (resp.
flun) controtled. then the formula wn Proposiion < s sim-
phfied as follows:

Corolfurv 72 In the same seting as - Proposiion v
assume that N grespo Ay s locally charge (resp. fluvy
controlled. Then 0 is Tocally solvable i and onls f

et Il vgeig) 2 00 Torall (v ig)e md S) (99)

where @, 18 defined by (22) and

Wl ey ig)

[D'"R,, Ix “’.«_:fk)”me D,_lf,‘. N “’u,fk)”/\{/\'

{ 1o

Proof: I the above hvpothesis s satisfied (D, £,
and (D, f); ,, are nonsingular. Then one can show that
(99) 1 equivalent Lo (8R), )

Remark: In [3] [8]. and [10]. .\ (resp. .\, ) s repre-
sented by ¢ g (vo) (resp. @ g i 0 and (Dg ), (resp.
(Dg; ), ) 1s positve definite. Therefore, |\, (rc.\pf.\, ) s
locally charge (resp. fluxj controlied.

Example 6: Consider the circuit of Example 3 Since
KMl tgotg) = (Dgg), it fails to have rank 1 at 1, 1y
and 1, 1, and. therefore, this circwt s not locally solva-
ble.

Exumple 7: Consider the circutt of Example 2. where
Agisgivenin bFig 4y with iy gg(rg 1A= 1.2, Since

Dgy ' .

Fheg.in) e, 1
and since Dgg and Dgg never vanish simultancousty. rank
Faltg. ig)=2 Consequently AFA and X is a one-
dimensional submanifold. Since

Klenia) |

tg. i
RVER-TR _ I)‘:R o
there are points where det Jef ve. i) = 0. Therefore. the
cireuit 1s not locally solvable. If we use Corollary 4. we can
see this more clearly. Consider the projection <} of £ onto
the (v, .1, )-space given in Fig. 4(b). If we further project 4
onto the 1, -axis. we see that 7, cannot be a local coordinate
where the curve intersects itself. Therefore. X is not locally
solvable.

Corollary 8: Let \ 5 admit a generalized port coordinate
representation and let A (resp. A,) be locally charge
resp. flux) controlled. Then

xk(l'k-ik) :[(“2 (DF)YQ)*(‘H - (DF)Y|)BRR (ﬂl (n")‘sl) t (B: (DF,‘s:)BR,R](r

9
' R
[ AL ? qR,

-
0 YRy
{a) by

e 4 A nonhnear arcut which s na localls solvable oo Resiston
comstrutne telatrons (b Progection of X ontethe vr, ooy b spae

.
where a. B.y.and 8 are asan (29). In parucular, off A s
globally voltage controlled. then

B |1
REL (102)
1 B/\{N .

and «f A, is globally current controlled. then

Wl vp.in) [(DF)

(DF)

B
Koy i) [ lkk

Bl
(1u3)

Recall (34), (35) and the notation used m Proposieon 2.

Propostiion 10: et Ao A Cand A, be globally param-
etrized and let X be an (n, - n, dimensional ¢ submani-
fold. Pick a proper tree and let o be its assoctated cotree.
Then Y s Tocally solvable af and only f for cach pER”
with x(p.i . v, )L X,

detI*(p) =0 (104)

where

I(p)

Dey < By Dey ) - By (D)
Diy, Bg Diy ) B/ (Di,)
} Dy
pe |,
(103)

Proof: Substitute (34) and (35) into KVL and KCL:

l‘Rt(PRi
1 - - B.,.B r
- KRR ! 0 (106)
1. BB, Cr.(Pg)
v (p ) ]
ix(pg) ]
- B! B,. . 1 i i (P )
hr e ST 0. (107
BR( BI( 1 'Rv(pk)
i
Let us write (106) and (107) as
H(p.i .v,) 0. ( 108)

Then s diffeomorphic to H - {(0). By a similar argument
to that of the proof of Proposiion 9. one sees that {90) 1s

it

(101)

¢ e e ke
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Fig. 5.

- e -

Lo eV,
ey
‘¢ 'Cy
5 e

A nonlincar arcuie which s locally solvable,

ey -

'y
SRyt

vet X oas not

diffeomorphic toR”

nonsingular if and only if

DH

D’ (109)

rank[ ] =b+n,+n,.
(P, .vy)

Computing the matrix of (109) and using elementary oper-

ations, one can show that (109) is equivalent to (104). O

Remark: The above result holds even when A ,. A - and
A\, are locally parametrized.

Now, observe that W (x) of (89) is a submatrix of F(.
defined by (17). This implies the following:

Proposition 11: 1f (88) holds, then ARK and ‘X is lo-
cally solvable.

Remark: A similar result holds for Proposition 10 and
Proposition 2. Observe that while Proposition 9 assumes
that X is an (n, +n, }-dimensional C* submanifold. Pro-
position |1 does not.

In many practical networks. # is a global diffeomor-
phism. i.e.. all variables in the network can be globally
expressed as a function of (g.¢) and hence = is globally
diffeomorphic to R™ “ "/ Of course X is locally solvable.
In Example 7. T is not locally solvable and X is not
diffeomorphic to R. A question arises; Are there networks
such that X is a submanifold not diffeomorphic to R " "1,
yet they are locally solvable? The answer is affirmative as
the following example shows.

Example 8: Consider the map F: R* —R® defined by
F(x.y.z)=(e*cosx.e’sinx, 2, yv.cos x.sinx). For v.x' €
R. define the equivalence relation x~x' by x—x' =247
where & is an integer. Clearly. then, the quotient space of R
with respect to this equivalence relation can be regarded as
the unit circle $' in R* R/~ =S". Let [x] denote the
equivalence class. Then F naturally induces the map F:
S'XR? SR* by

F(Ix).v.2) = F(x.y.z2). (110)

Since
e'(—sinx) e'cosx
e*(cosx) e'sinx
(dr)((xl.v.:)z ) ’ 1
]
—sin x €os X Welvn)
and since
e'(—sinx) e¥cosx
det{ e*(cosx) e’sinx =elV 50
1

we have rank (dF),,, , ., =3 for all ([x], y.2)ES' xR
Thercfore,. F is an immersion [6]. Clearly F is injective.
Since W F(x]. y.2)? =e? +22 +y* +1, we have

LF(x). v 2= 2 as iy, 2 — . Hence F is proper [6).
Consequently 1t 15 an embedding (6}, Define

— B! 2
Ay F(S'<R7)
Ug, ~€'COSY, Up =Ze'SINX, Uy - =

g, " ¥o g TCOSN. gy UMDY, (11h
This is a parametric representation of A .. Consider the
wrcuit of Fig. 5 where Ay is described by (111). 1t follows
from the above argument that Ay is a three-dimensional
submanifold diffeomorphic to $* R, It is clear that X is
diffeomorphic to A, and therefore diffeomorphic to S -
R:. Notice that p, = (x.y.2) always serves as a local
coordinate svstem for A, (not a global coordinate svstem.
however). As we remarked earlier, Proposition 10 holds
even when A, 1s locally parametrized. The matrix of (105)

1s given by

IH*(p)
[ LI ¥ e M ]
—e'smy  e’Cosx C,
e'cosx  e'siny -G
B 1 -Gy
1

Since det *(p) = — e 3£0. s locally solvable. Conse-
quently. the dvnamics of "X is perfectly well defined on X,
vet there is no global coordinate svstem in terms of which
the dynamics admits a global state equation because X =
S'XR* %R

Next. we will give two more examples that are of inter-
est.

Example 9: This example shows that there 18 a nontniv-
ial locally solvable circuit whose inductor is locally flux
controlled. but not locally current controlled. Consider the
circuit of Fig. 6(a) which consists of a 1-2 linear resistor
and a Josephson Junction device characterized by 1, =
k,sin k,¢. where k, and & ; are constants (Fig. 6(b)). This is
a flux controlled inductor which 1s not locally current
controlled. One can easilv show that transversalitv and
local solvability are satisfied.

Example 10: Here we will illustrate a power of geomet-
ric approach using an interesting example of Gocknar f11].
Consider the circuit of Fig. 7(a) where the resistor is linear
1-2 and A - is characterized by

e =(q- Q) +E =g (q) (112)

where Q and E#0 are constants. Since F(x) of (17) is

JRmam——— ‘"‘]
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(a) (hy

Fig 6 A locally solvable aircuit whose inductor vonstitutive relation 1s
not locally current controlled. (@) The circuit diagram. by Inductor
constitutive relation.

R .g} .
v \Q% R
. N 7‘J - — '
Q) (h)
Fig 7 A cwcunt where ¢, iy not a O courdinate (@) The creunt
duagram (b) Capacitor constitutive relation,
given by
s | VL
X)) - X : 2
1 Mg Q)

transversality holds. Since

-1 -1
‘JC(x):l b ]
local solvability holds and the dvnamics in terms of g is
given by
dq

(= —(q-Q)'- (113)

A problem arises, howe\'er. if one argues as follows: Dif-
ferentiating (112) with respecl to 7 one has

dl(

(D () (Dg(‘)qi(‘:(og(')qik

:(Dq(«) vR:—(Dg(‘) o (114)

Since g=g. (to)=(t.—E) ' +Q and since (Dg.),
3g— Q). one has

(Dg)y g, =M ~EY
This and (114) imply

(115)

Is (115) another differential equation describing the dy-
namics of the same circuit as (113)? The answer is no? If it
were, (113) and (115) must have the same qualitative
properties. So if (115) is the differential equation describ-
ing the dynamics of the circuit of Fig. 7. then v, = £ is an
equilibrium of the dynamics. But the corresponding value
g=g, '(E)=Q is not an equilibrium point of (113). Since
the existence of an equilibrium point must be a coordinate-
free property. there should be something wrong with saying
that (115) is the differential equation describing the dy-
namics of the circuit of Fig. 7. The point here is that v . is
not a C? coordinate for 2. Although the map: v,
(O Eedpaie §)=(~ 0o U =00 T 000 ~-Ey?'+Q)
is 2 homeomorphism, it is not a C? dlffeomorphlsm be-
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cause (v, - E)'7* + Q is not differentiable. (1t is not even a
C' diffeomorphism.) On the other hand the map:

g {tg o igaic.q)
=(-(g-0)~Elg- Q)+ E.
~(¢g-QV-E. (4-0Q) E.q)

is a C* diffeomorphism and (113) describes the dynamics.
A more geometric wav of l(mking at the situation is as
follows. The configuration space X is dlffcomorphu o the
graph of g,.. The vector ﬁdd X(Q 1y at(Q. £ i contained
in the tangent space T, , = te.. X, 4, Is in parallel with
the g-axis. Therefore, if we look at X, ,, from the g-axis,
we can observe the direction and the length of X, , . On
the other hand. if we look at X, ,, from the ¢, -axis. we
can detect neither the direction nor the length of X, ;.
Finaliv. let us remark that even though (115) does not
qualify as the differential equation describing the ds-
namics. (115) is true in the sense that for the flow x(r) on
<

dv (x(1)) B

o ).

e ey EY
Our geometric approach seems to be the night tool 1o
explain what is happening in this example.

We will next give a perturbation result on local solvabil-
ity. Recall that Ay is said to be locally hvbrid |3 if (9
holds and

det({Dfg)A) #0,

(lkll

forall (eg.ig)ENg Ny
(116)

for some fixed 2n g~ ny matnx A, where each column of 4
has either of the following forms:

(0010 00, - 0
(O o 000,100 .00,
;; g
Let
((Df)A),,, .= F - F,) (117)

and suppose that F corresponds to ix (tesp.. vy ). Then
that particular resistor is said o be locally coltuge controlled
(resp.. locally current controlled ).

Remark: Observe that in (52) and (53). local controlled-
ness is defined for A, whereas in the above definiton,
local controlledness is defined for cach resistor provided
that A g is locally hybrid.

Proposition 12: Given a nonlinear network X, assume
the following:

() Ay is locally hybrid and N (resp. ;) s locally
charge (resp. flux) controlled.

(i) A\NK#£ 0.

Then. by adding small linear capacitors and small lincar
inductors appropriately we can obtain a new network K
such that (1) ANK# @, (2) AAK. (3) W is locally solva-
ble.

Proof: Pick a proper tree 1 containing a maximum
number of locally voltage controtled resistors and a mini-
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mum number of locally current controlled resistors, Let 1)

denote its associated cotree. Partition (¢, £) i the following

manncr:
Elements voltages curients
lovally voltage controlled
resistors 1 v vy, i,
locally current controlled
FESINtONS tn f 'y, i,
mductors in v v, W i
Jovally voltage controlled B
resistors i L i,
S SO IR RO

locally current controlled
fesstors in v, i,

— - - - ————— i e |
capaditors in t, | 1, B

The fundamental loop matrix has the following form:

vy, 6, 4 vy, 6,
Bu : Bu' (11%)
1 BII BII Bu
Bu' B// Bu )

The submatrix B, 0 because of the choice of the tree.
Now insert a small linear capacitor in parallel with cach
locally voltage controlled resistor in =V and insert a smali
lincar inductor in series_with cach locally current con-
trolled resistor in 2, Let 7= L, UL UCUC,, where C) is
the branches of the capacitors added. and € denotes capa-
citors. It is clear that <V is a proper tree for the new
network. Statement (1) can be proved in a similar manner
1o the one in Proposition 4. To prove (3) observe that the
fundamental loop matrix for *X with respect to * has the
following form:

vy, Oy, U U ot o e

B,( B,
1 L ) 1 (1)
:BII ’ Bl(' BII

Bll 1 Bl( ’ BI i

where L, represents the inductors added. Since no resistors
are added, A g is the same as A ;. We compute the matrix
Walfg.ig) of (100) for X, It follows from (119) that
B'RR .:0. Sing;c éR‘.:‘(‘v,-e. Oy ) B, O ) g, T
(iyp by, ) and ig, =(if . if, ) we have

Wl g.ig) = Dy fr : Dy, i 0 IR . -(120)
Observe that the matrix of (120) depends only on (vg.ig)
and that if (8. ig) €A L), then (1g. ix) € Ag. Since (120)
is obtained simply by exchanging columns of the matrix of
(117). it follows from (116) that Ia(fe. i) is nonsingular.
By Corollury 7, X is locally solvable. This proves (3).
Proposition 11 implies AMK which proves (2). U

Example 11: Consider the circuit of Example 2. Since
the resistors are voltage controlled, insertion of ¢, and €|,
yields local solvability of the circuit. Therefore, the per-
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turbation in Example 2 was already good enough 1o ensure
not only transversahity but also local solvabihity,

Example 12 Consder the circunt of Example 3 Iosert-
ing a small lincar inductor in series. one can make the
arcuit locally solvable.

Remark: The number of reactive elements added i
Proposition 12 is no greater than the number of reactive
clements added in Proposinion 4. Notice, however. that in
Proposition 12, \ g 1s required to be focally hvbnd, whereas
i Proposution 4, the only restriction on A s that it should
be an n-dimensional C7 submanifold. The local hybrd-
ness assumption cennot be relaxed as the following exam-
ple shows,

Example 13 Consider the cireuit of Fig. 2(a) where the
resistor constitutive relation s given by the unit aircle S
(Fig. 8). Ity easy to cheek ATAL Tn fact 2 diffromor
phic 10 S' Since fplvgotg) tx tix 1 oand since
Wpltgatgd (D, fdi 0 we see that det g rgrg) O
at points 4 and B. Therefore, the circut is not locally
solvable. Observe that A iy not locally hvbrid since there
1s no funcuon £, satistying (9 and (116) for a fived 4. We
claim that there is no warv of mahing the crcuit focally
solvable by adding linear reactive elements. To show this
let X be a circuit obtamed by adding arbitrary number of
reactive elements to the original circuit X Then by (100),
either (e tx) (D, fi) 0 OF (. i)
(D, ), .., depending on how the reacuve elements are
added. In any case there are points where det 0 r4)

0. Therefore, "X cannot be locally solvable.

Note that the perturbation in Proposition 12 s a network
perturbation. It is not known if and when one can give
clement perturbations as in Proposiion 3 1m such a4 mannc
that D is locally solvable. One can sav. however. the crreunt
of Example 13 cannot be made locally solvable by element
perturbations. To see this let a perturbation Apof A, 8!
be described by fu(vg.15) 0. Since 8 s compact, Ay s
still  compact.  Therefore,  there are pomts where
(D, f) 0 and (D, fe),, ... U Hence
deti( /(g ig)- 0 somewhere.

H A (resp. A ) is not Jocally charge tresp. fluy) con-
trolled. one may not be able to find an X which s locally
solvable as the following example shows.

Example 14: Consider the aarcuit of baige 1) where the
resistor s linear and A is given by Frg. 1(hi. Suppose that
linear reactive elements are added m such a wan that there
is still a proper tree. Let € (resp. L)) be the capacitance
(resp. inductance) matrix of the capacitors (resp. inductors)
added. Let v be a proper tree for X If the resistor branch
belongs to 31, then J(£) of (89) 1s given by

(Cxoig)

ty t r., i
! : .- RB/,
%(x) e
| L, |,

Since all the elements, except for the origmnal capacitor, are
lincar, and since %V is a proper tree. one can show that




r
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Fig 8 Resnstor constitutive relation for the circmt of Example £3
(e 6.0, ) serves as a global coordinate system for s,
Since (l)g ), 0 somewhere. v\g see that det3C(€) -0
there. If the ruMur belongs to i, then a simifar argument
shows that 7 is not locally sol\dhlc.

We will next discuss relationship between local solvabil-
ity of X and transversality of the (n + n, »-port N derived
from X, under certain excitations. Replace capacitors and
inductors of X with ports. The resulting network is called
the (i + n, )-port N derived from =X, For the purpose of
convenience we witl keep the same notation for NV as X,
Drive the capacitor ports by independent voltage sources
t* and drive the inductor ports by independent current
sources iy, Define

AMer i) = (e )ER™ (e ig)EA et ed, i3]

(121)
This set represents the internal constitutive relations of N
under the excitation (e*.i}). Clearly Af(er r,,) s a b-
dimensional submanifold. Recall Xf, K%, and =" defined
by (72). (74). and (76), respectively.

Proposition 13: Given a nonlincar network 2. assume
that A, (resp. \,) is represented by ¢ g (r) (resp.
- g,(n, ) and lh.n (Dg), (resp. (Dg,); ) is \\mmglru
and positive definite. As.\umu also that T is an (ng tn, )
dimensional €~ submanifold. Then Y is locally solvable if
and onlyv if for the (n. +n,)-port N derived from X, the
following holds:

AMer AR forall (erip)ea'(ZT). (12

Proof: Tt follows from the hypothesis and Corollury 4
that X is locally solvable if and only if @' is a local
diffeomorphism To prove sufficiency. let (X, i) Ent(Zh)
and define

[

faleg i)
Glr.i)= t:( - v (123)
(v, i it

where o'": R*" —R" '™ s the projection map
at(e i) = (. .d,)

and f, is defined by (9). By the definition of A' (¢}, if). for
each (1,.7,) € A'(¢*. i?). there is a neighborhood VCR?’
of (. #,) such that

At i)V =G N0)

rank(DG), . ., = bh. forall (e.i)eA' (e i)},

(124)

Using (122) and (123) and an argument similar to the
proof of Proposition 1, one sees that for each (¢, i})€E

ll‘

(e.i)

a'(X)y and for (v, E A (et if)A ",
B
Q

A ’ A} AR
rank D.f. Dfs 2h. (125)

Dx'" D=

v,

By an argument similar to that of the proof of Proposition
9. one can show that o' iy a local diffeomorphism of and
only if (125} holds. Finally, since

U UVRY W U Ateri)oht (120
teeity 'Y

it folfows from (125) that for cach (e 8¢ 2 &' s a local

diffeomorphism. Therefore, X s locally solvable. Con-
verselv, aif @' is a local diffeomorphism at cach (e iy 20

then (125) and (126) imply (122)

V. EVENTUAD SIRICT Passiviny

Eventual stnct passivity s an important auahtatne
property of clectrical networks, because 11 guarantees that
all trajectories eventually approach a fined compact subset
of the configuration space [12] [ 14} Roughly speaking. the
results of this section sayv the following: Suppose that the
resistors are eventually strictly passive and  that eveny
capacitor is in parallel with a large inear resistor and everny
inductor is in series with a small hacar resistor. Then all
trajectories approach a fixed compact subset of the conng.-
uration space. Since the above assumption is satisfied by
most practical networks, the results guarantee that the
voltage and current waveforms are bounded in most net-
works of practical interest.

Consider the following one-form on R-" "

LUV

" "y
0 o dgt X, do, (127)
Ao A
and suppose that capacitors and inductors are reaprocat:
e "y
d0- I de, Ndg, b S diy do, 00 (12%)
Aot A

on R XA XA, I inaddition, X is simphy connected.
then [4] there is a unique real-valued function £ on X such
that for any two points x and x, of X

E(x) E(x,)! jno (129)
g

where 1" is any smooth curve on 2 connecting x and v If
we fix an arbitrary x, €2, then (129) is a well-defined
function on X. Clearly, £ is the energy stored in capacitors
and inductors relative to the point x, €X. Let W R <
R be defined by

"y

Wilvg ig)® 2 tpig,. (130)
A

4Reciprocity of capacitors and inductors is refated with the custence of
energy function, whereas reciprocity of a network [10] (dw 0, where o 1s
defined by (60)) is related with the existence of mived potennial function

1




~

C A - ot Pt

422

inclusion

A
\ [mcluuon lmcluslo"/
e

] '("‘.,—o M2

Fig. 9 Dhagram defining the two functions W and Wy,

Recall @, defined by (20) and let Wy, and W be defined by
Fig. 9. The function W is the power at resistors. It follows
from Tellegen's theorem that
dl:(x(r))
dr
Recall that a network W is said to be eventually strictly
passive [12]-14] if there is a compact subset QCZ such
that

- W(x(r)). (131)

W(x)>0, forall xeX—-Q. (132)

The following two propositions show the importance of
eventual strict passivity.

Proposition 14:{12]-114] Let E be proper, i.e., for every
aER. the set {xEX|E(x)<a} is compact, and let N be
eventually strictly passive. Then the set defined by

£ (x€Z|E(x)<aq,} (133)
a, = max E(x) (134)
x€ )

is compact. and for any initial state x(0), either one of the
following happens:

(i) There is a ¢, >0 such that x(1) €6 for all 121,

(i) x(1)€& for all =0 but lim,_ _ x(1)€b.

The set & contains many of the important information
concerning the dynamics. In particular, the following holds:

Proposition 15: Under the same setting as Proposition
14. we have

(i) All periodic orbits and equilibria are in &,

(i) In particular, equilibria lie in the set

(xEX|W(x)=0). (135)

Proof: (1) It follows from (131) and (132) that for any
x(1YEZ -, the energy E(x(1)) is strictly decreasing with
respect to ¢. This implies that for x(0)€Z —Q, the trajec-
tory x(t) cannot come bhack to x(0). Similarly. x(1) cannot
remain at x(0).

(i) Since E(x(1)) is either strictly increasing or strictly
decreasing outside the set defined by (135), the equilibria
must be located in (135). a

The set & in (133) is called a ser of atiraction since il
attracts all trajectories.

Eventual strict passivity is a property of W on Z, while
Wy is defined on A 5. These two functions may behave very
differently depending on the properties of ¢ and mg. (Sce
Fig. 9). The properties of W, are much easier to check than
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(a)

Fig 1) A network which is not eventually strictly passive (a) The
circuit diagram. (b) Trajectories on the linear subspace B 0.

those of W because Wy depends only on A g but not on K
so that one does not have to worry about Kirchhoff laws.
We need the following:

Definition 4: The resistor constitutive relations repre-
sented by A, are said to be eventually strictly passive if
there is a compact subset Qg of A g such that

Weltg.in)>0,  forall (vg.ig) EAg—Rg. (138

Eventual strict passivity of A is a physically meaningful
condition because it simply says that the resistors dissipate
positive power eventually. The condition is satisfied by a
broad class of resistors. A natural guestion. then. arises:
Does eventual strict passivity of A, imply existence of a
compact set of attraction? Another interesting question
related to this one was raised by Smale [8]. In terms of our
terminology, the problem is rephrased as follows: Suppose
that there 1s a number 8>0 satisfying

ng
Wilog.ig) =8 2 ("%u‘”ij (137)
ko

for all (vg. ig) with [[(tg. i)l sufficiently large. Then, does
the network have a compact set of attraction? The answer
to both of the two questions is no as the following example
shows.

Example 15: Consider the circuit of Fig. 10(a). where
all elements are linear and element values are all equal to
one. Since the resistor is lincar and 1-Q, Wy is positive
everywhere except for the origin. Hence A, is eventually
strictly passive. Observe that

Welvg.ig)=vpig=vg =iz 2B(vg +1%)

for 0<B=<1/2. Therefore. (137) is satisfied. We claim that
this circuit does not have a compact set of attraction. To
this end let us write the dynamics in terms of
(O Oy iy )
dr,. de,
C — i . (‘ﬁ'_‘-\ =1
Vde e T g T

diy,
s :"'"(‘,*'R("l.*'l_.)
di
1“2“‘#:—('(:“R(Vl'w+l':)' (138)

Drawing trajectories, (Fig. 10(h)). one can show that there




MAINUMOTO ¢f @f - GEOMELRIC PROPERTIES OF DYNAMIC NONEINEAR NEIWORRS 423
P L L LT R S Therefore, ¥ AN K 15 a closed submanifold of K. Conse-

quently, for any compact subset 4 of A, the preimage

X ] 15 '(A) is compact. This shows that ¢ is proper. Therefore,

we need only show that x is proper. Since x is obviously

e continuous, we need only show that the preimage of

U bounded subset of R*"« is bounded. Suppose that the

Ag fundamental topological hvpothesis holds and let ¢, (resp..

Fig 11 Diggram defiming the two functions x and ¢

iy a linear subspace on which all the trajectories are con-
centric circles. More specifically, the element values satisfy
the condition for this brnidge circuit to be balanced at the
angular frequency one. Therefore, for any ¢ CR. the fol-
lowing 15 a solution to (138):

tels) v 1) asing

l,’(l) l',)(l) TACOSE.

Since ¢ € R 1s arbitrary, the solution can have an arbitranly
large magnitude. Therefore, there is no compact set of
attraction. In terms of the above coordinate svstem. we
have

Wie.d, ):R(’I;wll‘)_

and hence it does not satisfy (132). Notice that any trajec-
tory starting outside the linear subspace W' =0, approaches
the origin.

Since (136) is satisfied by most resistors of practical
interest, it is natural for us to seek conditions under which
(136) implies (132). The following is a generalization of a
recent result by Chua and Green [12] for a general mani-
fold. We assume that A g is closed for technical reasons.
This is not a restrictive condition, however.

Lemma 2: Let £ be an (n +n, )-dimensional C* sub-
manifold and assume the following:

(1) Ag is closed and eventually strictly passive,

(i1} li(q. &)l — ¢ implies (e f, Ml — < on A <A,

Then "X iy eventually strictly passive if the following
Sundamental topological hypothesis is satisfied:

There are no loops and no cut sets consisting only of
capacitors and inductors, or equivalently

{1) there is a tree TV R) consisting only of resistors,

(2) there is a tree Y1(CL) containing all capacitors and
inductors.

Proof: Recall the map @, defined by (22). Suppose
that A, is eventually strictly passive and let £, be as in
(136). If @, is proper, then the preimage a, '(2,) is
compact because the preimage of a compact set under a
proper map is compact. 1t is, then, clear that the inequality
in (132) holds with respect to @, '(§2;). So we show that
the fundamental topological hypothesis implies that g is
proper. To this end let

[PEEY § {(139)

be the inclusion map and consider the map x defined by
Fig. 11. Since .\ 5 is assumed to be closed, A is also closed.

ig,) be the tree branch voltages (resp.. hnk currents) for
SR (resp.. links associated with SH(CL Y. Tt follows from
(15) that for e i g . )C K.

c Q. i Bliy (140)

where @ and 8 are the fundamental cut set matrix and the
fundamental loop matrix associated with S(R) and "7 (CL)Y,
respectively. Equation (140) and assumption (i) imply that

hxliwae, xeK s (& ig Jl—=x. (141
Since (&, . ikr) ts & subvector of (vg. i) we have
lfxll— . XEKN il ig)!—x. (142)

This shows that the preimage of a bounded subset under x
is bounded. Since the properties of x do not depend on a
particular choice of a tree, x is proper. o

Remark: Observe that in the above proof we took full
advantage of the coordinate free property. since in (140)
(142) we are using two different trees simultaneously.

Now. experiences tell us that most networks of practical
interest have a compact set of attraction. We next justify
this observation formally by carrving out a sbght network
perturbation. The perturbation we make is simply a for-
malization of the following hypothesis: “Every capacitor is
in parallel with a large lincar resistor and every inductor is
in series with a small lincar resistor,” Before stating the
results, we need the following:

Definition 5: A nonlinear network X is said 1o be
strongly locally solvable if

detI(x)# 0.  forallx€ A (143)
where 3(x) is defined by (89) and A is defined by (6).

Remarks: 1) 1f A (resp. A ) s Hocally charge (resp.
flux) controlled, then 2% is strongly locally solvable if and
only if

det I, (v iy ) #0. forall (e ig)e Ny (144)
where 3, ( vy, iz ) is defined by (100).

2) Condition (143) is stronger than (88) since for strong
local solvability the determinant should be nonzero on A
and since 2 CA. This condition is satisfied by manv net-
works, however. For example, the circuit of Fig. 2 with
capacitors added. satisfies this condition because

0
Wl trin) - D, [y [ 1}'

The perturbed network N of Proposinon 12 s stronghy
locally solvable because the matrix of (120) 1s nonsingular
for all (vg.ig)E Ay

Proposition 16; Given a nonhnear network Y, assume
the following:

(1) W is strongly locally solvable.
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(i1) Az is closed and eventually strictly passive,

(i) l(q. @)l — ¢ implies (v i, ) —xc on A XA,
Insert a large lincar resistor g,, A=1.---.n,. in parallel
with evcry capacitor and insert a small linear resistor r,,
A=1.---.n, in series with every inductor. Then

(h \ﬂK;é @ and $=ANnK is an (n. +n;)-
dimensional C? submanifold,

(2) TL is locally solvable,

(3) Nis eventually strictly passive. Consequently N has
a compact set of attraction.

Proof: (1) In terms of a proper tree 7,
network X is described by

the original

vReJrBRRvR_J + Brot =0 (145)
v, + B pog, + B v =0 (146)
vy~ Blnic,~Blxi, =0 (147)
ic—Blig,~ Bl =0 (148)

(v.igq.¢)EA. (149)

Let ¥V = TUr; where r; represents branches of r's. It is
clear that %V is a proper tree for “X. Decompose ¢ and 7 as

ﬁ:‘ URC. vg""l.;vkg‘ L Y )
i=ig i iyigy i)

where g and r denote the variables associated with g;'s and
r.’s. Then -T is described by

tr, t Bratr, + Brcte =0 (150)
vy + By gy Bt t0,=0 (151)
vty =0 (152)
ey —Bl;rRiRg__Bl.rRil,:() (153)
"('*BRT("Rg"BI.TR"L_"g:o (154)
i,—i, =0 (155)
(v.ig.d)EA (156)
i,=g 'vg {157}
v=ri (158)
where
g= diag(g. .8, ). r=diag(r,.---.r, ). (159)

Eliminating t,. 1. i,. and i,. we see that W is described by

(150), (153), (156), and

v, + B, gog, + B, v tri; =0 (160)
ic~ Bicig,~Blpi, tg 't =0 (161)
%="9 (162)

=-g 'o (163)

v, =ri; (164)

i<, (165)

Let us rewrite (145)-(149) and (160)- (165) more concisely.
Let B and Q be the fundamental loop matrix and the
fundamental cut set matrix for ‘W, respectively. Then, of
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course, (145)--(149) are written as

B v
e M
(v.ig.¢)EA. (167)

Comparing (145)-(149) with (150), (153). (136). (160)
(167). we see that the differences between X and *X are in
the last two terms of (160). (161). and (162)- (165). There-

(166)

fore. X is described by
B’ > Filc
A “I=0 (16%)
Qo i G i
(c.i.g.d)EA (169)
. L
(v,.0.i,.i,)=H ; (170)
1
where
ire 1 Ig, i
| e
F= : ]
rooo
Yre U1 ey, W
. . (171)
G= ;
4
-1
r
H= ‘ (172)
—&
. 1
Now let x, EAN K & and let U be a bounded neighbor-

hood of x, in R?*'" "7 Since the set (ANK)NTL is a
bounded submanifold, small perturbations of KN U do not
destroy transversality of ANU and KN U and hence they
do not destroy nonemptiness of (AN L )IN(KNL"). There-
fore, if g, is large enough and if r, is small enough. then
IFI and HGY in (168) are small enough to guarantee
nonemptiness of the intersection of (168) and (169). Since
(170) does not deslroy this nonemptiness. we have ANK=
@ . We show ARK later.

(2) Since (D, fe)e, .q) (TeSP. (D; £, o)) 15 a square
matrix, (89) lmphes that if 9 is slrnnglv locally solvable,
then (D, [ ), ) (Tesp- (D; fi )i o)) 18 nonsingular on A
(resp. A, ). i.e. Ao (resp. A, ) is locally charge (resp. ﬂux)
controlled. Therefore, we can use Corollary 7 10 check focal
solvability of . Observe that

fk(l'n~in)
fltgig)=i,—g 'v, (173)
t-ri

and that the fundamental loop matrix B for -¥ is given by

v,,c L7 L 17 Cg
- By B
. R R R¢ ( |74'
1 B B,
1
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It follows from this that
URg L 78
- _ BRR l’Rg . é _ BR( lRt
AR R e
UK '3
(175)
Uy 4

B =[Bx 1]v,.

Let ¢, =(vg. ). B, = (g, 1) ig, =(ig,. i) and iy, =
(i, i,). Then

Dlﬁgfk_(DékefR)BRR

(D, fi ] [Pofe -

— _ : Bpp -

- ) ’ : ~ 8 . .
. 1 . .

[ Dr,,,JfR - ( D.‘Rtfk )BRR

= (176)
| 1
D, fu+(Di, fu)Bix
Dike Ie - Di,,}fR BRTR l
= . 11+
| -
[ D, 1o +(D,_ fe)Ble
= 1 (177)

It follows from (176), (177). and (100) that

D, fr ~(D., fz)Brr

ICa{ - ix)=

It is clear that ‘jCR depends only on (g, i) and that
et F0a( f5. i )| = |det Hal eq. i ). (179)
Now if (£g.ig)E Mg, then (v, ig)E N
A = {(ig i tgix)EAR i, =8 ‘et =ri ).
(180)
By the strong local solvability assumption. we have
|det K pl eg.ig ) >0, forall {eg.ig)E AR,
This and (179) imply
[det 9C ol #4. i )| >0.

x. because

for all (€. i) €l £).

It follows from Caorollary 7 that Fis locally solvable. By
Proposition 11, we have ARK. Therefore, Sisan (n +n;)
-dimensional C* submanifold. X
(3) The resistor constitutive relations Ay for X is de-
scribed by (180) where g - (1g.t,.0). i “(ig.idg.i,)
Therefore, the function Wy mrresponding to Wy is given
by
Welbg.ig) Walvp.ig)+elg ‘v +ilri,.

Fig. 12 Perturbation of network of Fig. 1((a).

It follows from condition (ii) that there is a compact set
Q2 CAg such that (136) holds. For any a0, let

=gl . =g
i, =g t.t=ri l

Q.= (v, 0.0,.0) )Hsa]”

*r LA A [ e X

Then the set SZR Qg X&,, has the property that

We>0 on A, —Q,

because g and r are diagonal matrices with positive ele-

ments. Finally, to show that the fundamental topological
hypothesis is satisfied, let R,. L. r;. and g,_represent the
branches of the resistors in 7. inductors in £. the added
resistors 7, 's and the added resistors g,'s. Then * T(R)Y= R,
Ur; Ug, is a tree for N which consists only of rcsmurs
Also S(CLY=SUL is a tree for S which contains all
capacitors and inductors. 1t follows from Lemma 2 and
condition (iit) that 9 is eventually strictly passive. ]

Example 16: Consider the circuit of Example 15. Since
the circuit is linear, all the conditions of Proposition 16 are
satisfied. The perturbed circuit i1s shown in Fig. 12. It
follows from Proposition 16 that this perturbed circuit has a

Dy, fx (D fr) Bl

1 . (178)

(Fx.ix)

compact set of attraction. In fact the linear subspace B =0
in Fig. 10(b) degenerates into the origin and any closed
ball centered at the origin serves as a compact set of
attraction.

Remark: As we have seen ‘JCR(tR )= Hplegaig) for
(6. () Ed( ). But (6. i ) ER( L) does not necessarils
imply (4. i) EB() even though (rg.iz)E N, Recal-
ling Corollary 7 and Definition S, one sees why we needed
the strong local solvability hypothesis.

We will next replace strong local solvability with another
condition.

Propositios '7: Replace the “strong local solvability™
hypothesis in J soposinon 16 with the following hvpothesis:

(1) = is a global diffeomorphism.

Then. under the same perturbation as in Proposition 16, the
same conclusion holds.

Proof: The preceding proof for Proposition 16 remains
applicable except for the fact that & is an (ng tn,)-
dimensional (' submanifold and that X is locally solvabie.
In order to prove this recall (145)  (149). Hypothesis (1)
implies that (v.i.q. @) is expressible as a C? function of

e e e —

|
s
i
g

e R o cin
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YR
YR'9m { R }
N
(a) (b}
Fig. 13. A nonlinear network which becomes cventually strictly passive

after perturbation. (a) The circuit diagram. (b) Resistor constitutive
relation.

q.9)

(v.iq.¢)=7"'(q.9).
Recall (150)-(158) and set o} = o, +v,. i¢- = i —i,. Then
(150), (151). (153), (154), and (156) are exactly the same as
(145)-(149). Therefore,

(vp .0 ig. i i.g.)=m '(g.0). (181)

It follows from (152). (l55) (157), (158) and (181) that
(8.0,.4,.i,) is also a C? function of (q.¢). Therefore, all
the vanables of N are expressible as a C? function of
q.4)

(b.1.9.0)=% '(q.9).
If follows from the way # ' was determined that & isa
global diffeomorphism and hence so is 4. Therefore. 2 is
an (n.+n,)-dimensional C? submanifold. Since & is a
global diffeomorphism, it is a local diffeomorphism. It
follows from Theorem I that *Y is locally solvable. O

Example 17: Consider the network of Fig. 13(a) where
the resistor is described by Fig. 13(b). The resistor is
eventually strictly passive. It is easy to show that # is a
global diffeomorphism. Therefore we can make the same
perturbation as in Example 16 so that the network will
have a compact set of attraction.

We will next relax the “strong local solvability™ hypothe-
sis and the global diffeomorphism assumption, while im-
posing a stronger condition on A, to derive a different
perturbation result. Recall that A is said to be globully
hybrid [3) if

1

Ar={(vg.ig)l y=h(x))

where y=(y.- - ¥, ) x=(x.0-.x,,) and if v, is the
current (resp., voltage) of the kth reststor then x, is the
voltage (resp.. current) of the kth resistor. If v, is the
current (resp., voltage). then that particular resistor is
called voltage controlled (resp.. current controlled). The
following result says that most practical networks can be
perturbed in such a manner that the resulting network are
locally solvable and have compact sets of attraction.

Theorem 2: Given a nonlinear network ‘X assume the
following:

(i) A, is closed, globally hybrid and eventually stricdy
passive.

(ii) A (resp. A,) is locaily charge (resp. flux) controlled
and 1i(q. )il — oo implies {i(g..f; i— 2 on A, XA,

(i) ANK+#£©.

Perturb ‘X in the following manner:

(a) Let ©7 be a proper tree containing a maximum num-
ber of voltage controlled resistors and a minimum number

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOI. € A8-2K NG S, May J9R]

of current controlled resistors and let i be its associated
cotree. Insert a small linear capacitor in parallel with each
voltage controlled resistor in 7 and insert a small linear
inductor in series with each current controlied resistor in 1.
Call the resulting network Y.

(b) Insert a large linear resistor g, in parallel with each
capacitor of K and insert a small linear resistor r, in series
with each inductor of Y. Call the resulting network X.
Then the following hold:

M ANK#©2 and S=ANK is an (n.+n, +k)-
dimensional C? submanifold where & is the number of
reactive elements added, A and K are the resistor constitu-
tive relations and the Kirchhoff space of "X, respectively,

(2) N is locally solvable, _

(3) W is eventually stricily passive. Consequently *X has
a compact set of attraction.

Proof: (1) 1t is clear that one can prove ANK = @ in
a similar manner to the proof of Proposition 16. We will
prove AMK later. )

(2). (3) We first claim that % is strongly locally solvable.
To this end partition (v.i) of X as in the proof of
Proposition 16. Since A g is assumed to be globally hvbrid.
it can be represented as follows:

i q-—f,,_((t*,vq.c,-ﬂ.i,‘.i,f)i()
—f;»e(rl,q.c,-.i 0, )=0
f/.,(':.r 'It) -0
flg( Voo 'Iq"li):('

where V and / denotc voltage controlled and current
controlled resistors, respectively. We write these equations
as

frleg.ig)=0.

1t follows from (120) that for N we have

%R(ék-iR): D(l,., "E)IR: n.tnl,')fk .
(g . tg)
Y, Y, i i,
1
_ 1
RE
1

Therefore, jCR( fg. 1) 15 a constant nonsingular matrix and
W is strongly locally solvable. Clearly. Ak = A g because no
resistors are added in (a). This implies that \R Is eventu-
ally strictly passive. Since % satisfies the hypothesis of
Proposition 16, by taking procedure (b), we obtain ‘X which
is locally solvable, AR K and eventually strictly passive. U

Example 18: Consider the network of Fig. 14(a). where
R, and R, are as in Fig. 2(b). Other elements are linear. By
a similar reasoning to that of Example 2. one can show that
AMK. Pick the proper tree 1= {(‘,.(‘ C,.R,}). Then
applying procedure (a) of Theorem 2, we obtain ‘X which is
strongly locally solvable (Fig. 14(h)). The network W of
Fig. 14(b) does not satisfy the fundamental topological
hypothesis, however, because there is a capacitor-only cut
set. Insert large linear resistors. g,. 8. g,. and g, according




MAISUMOBO ¢f af.) GEOMEIRIC PROPERITES OF DYNAMIC NONLINEAR NI TWORKS 427
R, R/ Doy,
G Ry N Ry N Dv,,ﬂ
Rz G !/ ’r('-’k.l'k)AR_lm D'-R . (A})
€, Cy Ca G o
Ra RQ D’R" P
A
X X

wh

Fig. 14 A nonlincar network which becomes locally solvable and even-
tually stictly passive after perturbations. (a) Original network Y. (b)
Perturbed network *X. () Perturbed network X

to procedure (b) and obtain X (Fig. 14(c)). Theorem 2 says
that *Y has a compact set of attraction.

Remark: The elements added in Theorem 2 can be
thought of as parasitic elements of Y. Therefore Theorem
2 formally justifies the fact that in most networks of
practical interest, voltage and current waveforms eventu-
ally approach a fixed compact set.

APPENDIX

Proof of Proposition 3: We will first prove the follow-
ing:

Lemma A. Suppose that A (resp. A, ) is locally voltage
{resp. current) controlled. Then ARK if and only if A,
7 K ). where @ is defined by (20).

Proof: If A, (resp. ;) is locally voltage (resp. cur-
rent) controlled, then . (resp. i) serves as a local coordi-
nate system for .\ (resp. A, ). This implies that (Dy),
(resp. (Di, ), ) in (42) is nonsingular. By elementary opera-
tions, one can show that (41) holds if and only if

Dry, g'_BRR = Bgc
rank ﬁ::: ! . =2n,
Dig, R Bix By
(A1)
Next. observe that
g, o ig, i
~Brg By
ooy il K)=Im | ! ,
Bix By
(A2)

Equations (A.2) and (A.3) imply that AR ay(K) if and
only if (A.1) holds. tJ

Knowing that AMK is equivalent (o A g M mg(K ). one
sees that Proposition 3 can be proved in a similar manner
to that of Theorem 3 in {3] which is the same as the proof
of (ii-a) of Theorem 2 of {3]. Proof of (ii-a) of Theorem 2
uses Lemmas 1, 2, and 4 of [3]. It is easy to show that
Lemma 1 is true for 2 submanifolds. Lemna 2 has
nothing to do with differentiability. Therefore we need to
only show that Lemma 4 is true in the C* category. We
state this in the following:

Lemma B: Let A be an nXn matrix such that 14 - 1))
is sufficiently small. Then there are neighborhoods U and
U, of the origin of R" with U, CU, and there is a C°*
function G: R" - R" such that

(1) G=A4 on U,,

(i) G=i, off U,, where i, is the identity map of R”.

(ili) G is arbitrarily close to i, in the strong C* topology.

Proof: Let Q%(i,: €(-)) be a sufficiently small neigh-
borhood of i, in C}R".R") with respect to the strong -
topology. Since ¢(x)>0 for all xER", there are numbers
€>0 and 6 >0 such that e{ x)=¢ for all x with |l xi|<Z8. Let
8, satisfy 0<<8,<<8. Then there is a C* function (bump
function {6]) p: R" — R such that

, RS if llxll <8,
@ "(‘)"{o. if llxll>8 (a4)
(i1) There is a k>0 such that
I Du) 1<k, ll(sz)xI|<k (A.5)

for all x€R". Now, choose 4 close enough to i, so that
d

€
“A’—”|<m—) (A.(\)

and define
G(x)= p(x)Ax+(1-p(x))x.

We will show that GE‘?lz(id:((-)). Since p(x)=0 for
llxll =8, we need 10 check the C? size of G- i, only for
fxll<d. Since G(x)—x=p(xNAx~ x). we have, vsing
(A.4)- (A.6), that

HG(x)-xl+I(DG), -1+ H(Dz(.‘)lll
sp(x)Ax - x| +i(Dp) 1 Ax-—xil
()i A=+ (D) [t Ax-xli+20(Dp) W14 - 1
< A-UM(Hxl+kxll+ 1+kNxl+24)

<A -1 +8)(142k)<e.

Take U, = (x€R"[lixl[<8} and U, ~ {xER"[lixli<8,}.
Then all the properties are satisfied. 0
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